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Abstract

The detection of Chagas disease through serological
testing is time-consuming and only available in limited
quantities. To ensure adequate prioritization of patients
for serological testing, this work aimed to develop an al-
gorithm to detect signs of Chagas disease in electrocar-
diograms (ECG) as part of the 2025 George B. Moody
PhysioNet Challenge. Due to the scarcity of serologically
validated training data, using self-reported data with po-
tentially incorrect labels is necessary.

We trained a multi-layer perceptron classifier on top of
the features from a frozen ECGFounder model. Our train-
ing algorithm tackled three main challenges: Class imbal-
ance, dataset bias, and noisy labels. First, we alleviated
the class imbalance problem by using specialized ECG
data augmentation methods and sharpness aware mini-
mization. Then, we mitigated dataset bias by using domain
adversarial learning to ensure our model learns dataset-
invariant features. Subsequently, we recast the noisy labels
problem within the framework of semi-supervised learning
and addressed it using the FixMatch algorithm. Finally,
we improved the performance of our algorithm on unseen
datasets by employing test-time adaptation.

The proposed approach achieved a score of of 0.585
in five-fold cross-validation and 0.144 (rank 35/40, team
DEbuggers) on the hidden test set.

1. Introduction

The gold standard for the diagnosis of Chagas disease
is a serological blood test, that must be specifically or-
dered and is often missed due to unspecific or absent symp-
toms. In contrast, ECGs are widely available, routinely
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recorded and can prompt this targeted serology and en-
able population-scale screening [1,2]. Robust Chagas de-
tection is challenging due to: (i) class imbalance (pos-
itives are scarce), (ii) dataset bias from regional demo-
graphics and device differences that can mislead models
away from disease physiology, and (iii) label noise, since
self-reported status and proxy rules can be incorrect and
some seropositive patients may have ECGs labeled “nor-
mal”, since they can possibly manage the infection without
developing structural heart diseases.

For the 2025 George B. Moody PhysioNet Chal-
lenge [1-3], we built on the ECG foundation model ECG-
Founder [4] with three prespecified aims: (i) mitigate
class imbalance using specialized ECG augmentations
and sharpness-aware minimization (SAM) [5]; (ii) re-
duce dataset bias via domain-adversarial learning [6] to
learn dataset-invariant features; and (iii) leverage unla-
beled/weakly labeled data while being robust to label
noise using FixMatch [7]; additionally, we applied test-
time adaptation to address residual distribution shift [8].

2. Methods

Our approach combined a frozen pretrained large neu-
ral network, ECGFounder [4], with three lightweight fully
connected neural networks — a feature extractor, dataset
classifier, and Chagas classifier. The feature extractor was
efficiently trained through the dataset and Chagas classi-
fiers to map ECGFounder’s embeddings to dataset invari-
ant features, specialized for Chagas disease detection. An
overview of the complete model architecture is provided
in Figure 1. In the following sections, we present a com-
prehensive description of each system component, the op-
timization procedure, and implementation details.
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2.1. Dataset & Preprocessing

This challenge’s training set consisted of three datasets:
SaMi-Trop [9], CODE-15% [10], and PTB-XL [11]. The
hidden test set contained samples from REDS-II [12],
ELSA-Brasil [13], and a private dataset. Chagas disease
may in some cases not result in abnormal ECG waveforms.
Therefore, 286 patients’ ECGs in the SaMi-Trop dataset
were labeled as normal despite testing positive for Chagas
disease. We labeled these patients as negatives and the rest
as positives. We labeled all normal ECGs in CODE-15%
as negatives and opted to ignore the self-reported Chagas
labels, therefore treating the abnormal ECGs as unlabeled.
Finally, we labeled every sample in PTB-XL as negative.

We pre-processed the raw ECG waveforms by first re-
placing NaN or infinite values with zero and resampling
to 500 Hz through linear interpolation. We then applied
a sixth order digital Butterworth bandpass filter with cut-
off frequencies of 1 Hz and 30 Hz. We subsequently seg-
mented the signal into non-overlapping segments of 5000
datapoints (10 seconds), with the exception of the last seg-
ment, which always contained the last 5000 samples of the
signal. Segments shorter than 10 seconds were extended
through symmetric zero-padding. The segmentation was
not necessary for this challenge’s training set, but was nev-
ertheless included to deal with possibly longer signals in
the hidden test datasets. Finally, we independently applied
z-score standardization to each segment.

2.2. Augmentations

We applied data augmentations to the pre-processed
ECG waveforms during training to deal with class imbal-
ance [14]. Each waveform was sequentially augmented
k-times with & ~ U{1,3} and augmentations sampled
from the set of all augmentations A without replace-
ment. The set A contains the following augmentations:
Adding zero-mean, scaled gaussian noise with an SNR
s ~ U(10dB,40dB), randomly setting n leads to zero
with n ~ U{1, 3}, quantizing the signal to n bins with
n ~ U{256,1024}, adding zero-mean, scaled baseline
wander from the MIT-BIH noise stress test database [15]
with an SNR s ~ U(10dB, 40dB), and finally leaving
the signal unchanged. The baseline wander noise had two
channels, which were both independently included.

2.3. Feature Extractor

The feature extractor combined ECGFounder’s embed-
dings with the patients’ age and sex. Sex was mapped to
a 16 dimensional vector through a dictionary with three
entries (male, female, other/unknown). Invalid age values
were first replaced with -1 and age was then divided by
100 and mapped to a 16 dimensional vector through a fully

connected layer. ECGFounder’s embeddings and the vec-
tors were then concatenated to form a 1056 dimensional
input vector, which was passed through two 1056 dimen-
sional fully connected layers, each with an additional layer
norm layer and GELU activation function. We refer to this
combination of a fully connected layer, layer norm, and
GELU as “fully connected block”™ in the rest of this work.

2.4. Domain Adversarial Learning

The feature extractor’s output was fed into a dataset clas-
sifier, consisting of two fully connected blocks (512 and
128 dimensional respectively) with a final 2 dimensional
fully connected layer. The dataset classifier was trained
to estimate whether a sample originated from CODE-15%
or PTB-XL. The dataset classifier was trained exclusively
on negative samples, as the model should easily be able to
classify positive Chagas cases as originating from CODE-
15% due to the lack of Chagas cases in the PTB-XL
dataset. The dataset classifier’s gradient was reversed and
multiplied with A = ﬁ — 1 before back-propagating
to the feature extractor [6], where ¢ is the current training
iteration divided by the maximum number of iterations.

2.5. Chagas Classifier

The feature extractor’s output was also fed into a Cha-
gas classifier, consisting of three fully connected blocks
(1024, 512, and 128 dimensional respectively) with a final
6 dimensional fully connected layer. The Chagas classi-
fier was a multi-input multi-output (MIMO) network with
3 heads, i.e. the network took in 3 different inputs concate-
nated into a 3168 dimensional vector during training and
outputted a 6 dimensional vector containing their respec-
tive predictions [16]. At test-time, the input was repeated
3 times and the predictions were averaged. This resulted
in an efficient implicit ensemble network [16].

2.6. FixMatch

We employed the FixMatch algorithm [7] to exploit the
unlabeled CODE-15% samples. We denote the previous
augmentation pipeline as a “weak augmentation” and de-
fine the following pipeline as a “strong augmentation” in
accordance with the FixMatch algorithm: Each waveform
is sequentially augmented k-times with k& ~ U{5,7} and
augmentations sampled from the set of all strong augmen-
tations .4 without replacement. The set A contains the
following augmentations: Adding zero-mean, scaled gaus-
sian noise with an SNR s ~ U(10dB, 40dB), randomly
setting n leads to zero with n ~ U{3, 6}, quantizing the
signal to n bins with n ~ U{128, 256}, adding zero-mean,
scaled baseline wander, muscle artifact, or electrode move-
ment from the MIT-BIH noise stress test database with an
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SNR s ~ U(5dB, 10dB) to simulate strong and realistic
signal corruptions [15]. The MIT-BIH noise signals had
two channels each, which were independently included, re-
sulting in the set .4 containing 9 augmentations. We used
a confidence threshold of 0.95 and an unsupervised batch
size of 32, equal to the supervised batch size.

2.7.  Optimization

We optimized the neural networks with SAM [5] with
p = 0.1, as it has been shown to help with class imbalance
and label noise [5, 14]. The base optimizer was AdamW
with a learning rate of 5 - 1072, 31 = 0.9, B2 = 0.999,
€ = 1078, and weight decay of 0.01. The loss function was
an unweighted addition of three losses: A standard cross-
entropy loss between the labeled samples and their Cha-
gas predictions, the FixMatch unsupervised loss [7], and
the domain adversarial loss [6]. We employed a weighted
sampler for the labeled batches, which drew samples from
SaMi-Trop, CODE-15%, and PTB-XL with equal proba-
bility. The models were trained for 20 epochs. Freezing
the ECGFounder weights improved the optimization’s ef-
ficiency, at the cost of limiting the adaptability to the train-
ing datasets. This design choice was the main difference
between our approach and others in the challenge.

2.8. Test-Time Adaptation

We finally improved the performance of the Chagas
classifier on distribution-shifted datasets with the entropy
minimization method COME [8]. In particular, we min-
imized the entropy of the MIMO ensemble’s mean pre-
diction, effectively not only minimizing the entropy of
each individual prediction, but also minimizing their dis-
agreement. We performed one optimization step per sam-
ple with the AdamW optimizer with a learning rate of
3.125 - 107 and did not filter samples based on entropy.
If a sample consisted of multiple segments, the prediction
with the highest Chagas probability was taken.

3. Results

We validated our approach with stratified five-fold cross
validation using the labeled subset. The unlabeled CODE-
15% subset was included in every training fold and used by
the FixMatch algorithm. We report the mean challenge and
F; score for our algorithm and some ablations in Table 1.
We furthermore report the five-fold cross validation, hid-
den validation, and hidden test set challenge scores for our
chosen entry in Table 2. The chosen entry of our team, DE-
buggers, achieved a challenge score of 0.144 on the hidden
test set, ranking 35/40.

12-Lead ECG
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- (o)
. [RegNet Block]

RegNet Block | x7: Sex

Dataset Source
Prediction

Chagas Label
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Figure 1. Complete model architecture. The color blue
refers to inputs, red to outputs, and gray to model layers.
We refer to Li et al. [4] for the RegNet block’s design.

4. Discussion and Conclusions

The challenge and F; scores in Table 1 showed con-
flicting results. We observed that the local challenge score
overestimated the performance of our approach, while the
F; score was a better measure of our progress. We there-
fore based our analysis on the F'; scores in Table 1. The
ablations of our algorithm showed that SAM [5, 14] and
MIMO [16] resulted in the largest improvements. Cross-
validation under-estimated the influence of domain adver-
sarial learning [6] and data augmentations, as they im-
proved generalization and therefore prevented overfitting
on the local dataset. Our approach performed reasonably
well on the hidden validation set, being 0.108 behind the
best entry, but heavily deteriorated on the hidden test set.
We hypothesize that freezing the ECGFounder weights
hindered the adaptation of our model to Brazilian ECG
datasets. COME failed to mitigate this distribution shift,
as our Hackathon entry with the same algorithm without
COME performed slightly better with a score of 0.150 [8].
Further improvements may therefore be achieved by un-
freezing the ECGFounder weights and training on more
unlabeled data, e.g. by including the full CODE dataset.
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Algorithm Score Fy

ECGFounder + MLP Classifier 0.712 | 0.511
+ Augmentations 0.731 | 0.471
+ Domain adversarial learning 0.765 | 0.285
+ Sharpness aware minimization | 0.762 | 0.505
+ MIMO classifier 0.730 | 0.574
+ FixMatch 0.744 | 0.567
+ COME = Final algorithm 0.585 | 0.440

Table 1. Stratified five-fold cross validation results for our
algorithm and its ablations. The mean Challenge and F;
scores are reported.

Test
0.144

Validation
0.350

Training
0.585 £ 0.077

Ranking
35/40

Table 2. Challenge scores for our selected entry (team DE-
buggers), including the ranking of our team on the hidden
test set. We report five-fold cross validation results with
one standard deviation on the public training set, repeated
scoring on the hidden validation set, and one-time scoring
on the hidden test set.
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